
Microbiology 101 for Small Meat Processors

NICHE MEAT PROCESSOR ASSISTANCE NETWORK

February 1, 2012 Webinar

www.nichemeatprocessing.org

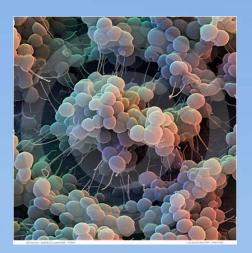
MICROBIOLOGY 101

Microbiology 101

- Microorganisms in Food
- Pathogens
- Spoilage Organisms
- Microbial Analysis

College of Agricultural Sciences

PENNSTATE


Microorganisms in Food

- What are microorganisms?
- Types of microorganisms
- Microorganisms in food
- Factors affecting microbial growth



What are microorganisms?

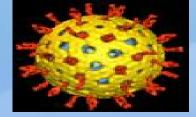
 Organisms that are too small to be seen clearly with the naked eye. (micro meaning small, and organism meaning living being).

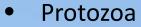
Types of microorganisms

• Bacteria

PENNSTATE

• Fungi (Molds and Yeasts)

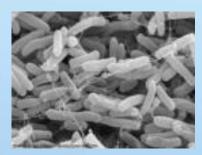

College of Agricultural Sciences



• Viruses

Bacteria

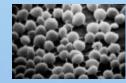
College of Agricultural Sciences


PENNSTATE

- They are the largest group of microorganisms.
- They are prokaryotic cells
- They are the most important to the food processor.
- Bacteria vary in size:

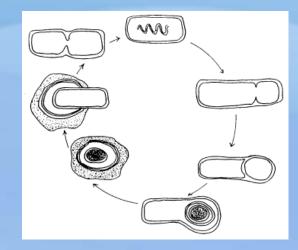
Most bacteria range from 0.5 um to 2.0 um in diameter

(25,000 cells side by side to equal one inch)



Bacterial cell shapes

- Bacillus (Rod)
- Coccus (Spherical)
- Vibrio
- Spirillum
- Spirochete

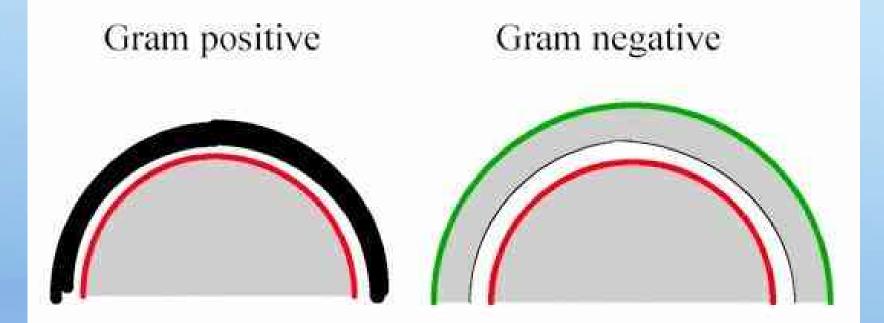


Bacterial spores: Endospores

PENNSTATE

College of Agricultural Sciences

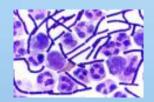
- Some bacteria produce spores to survive adverse conditions.
- The main bacterial genera that are of significance in foods are *Bacillus* and *Clostridium*.
- Endospores are resistant to heat, drying and chemicals.
- When the conditions are favorable, these spores can germinate and grow into vegetative cells.

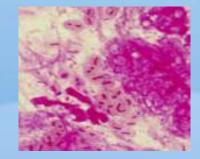

Differentiating Bacteria by Cell Wall

PENNSTATE

College of Agricultural Sciences

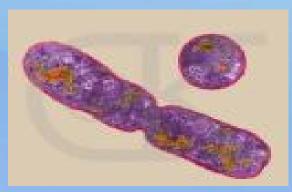
- **Gram-Positive Bacteria**: Cell wall in Grampositive bacteria has a thick layer of peptidoglycan.
- Gram-Negative Bacteria: Cell wall is more complex, it has thin layer of peptidoglycan, polysaccharides, proteins and lipids.

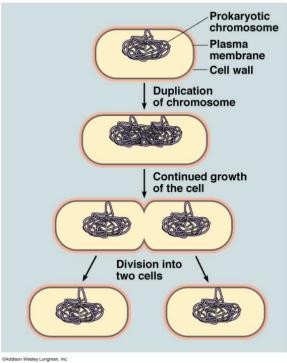



Red: cell membrane Black: peptidoglycan Green: Outer membrane

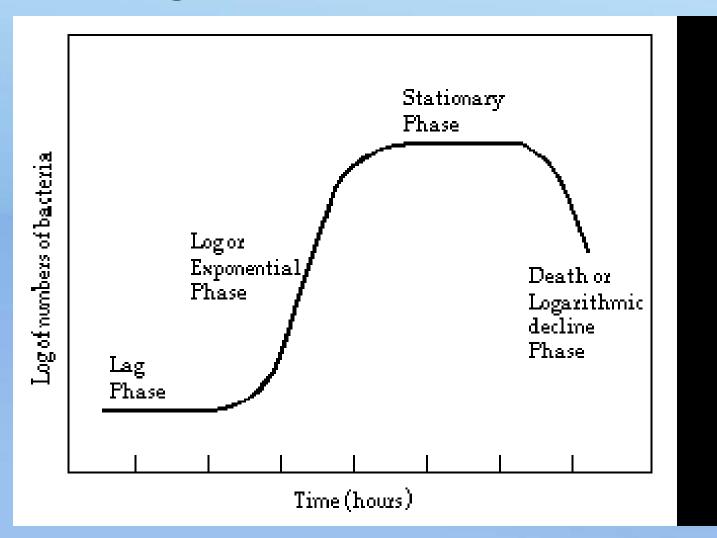
Bacterial Staining: Gram stain

- Based on the ability of bacteria to retain specific dyes:
 - Gram Positive: purple with crystal violet
 - Gram Negative: red with safranin (counter-stain)

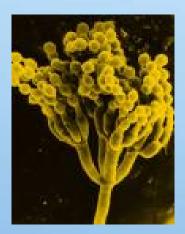




Bacterial growth


 Bacterial growth is defined as the increase in the number of cells, which occur by cell division: binary fission

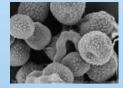
Bacterial growth curve

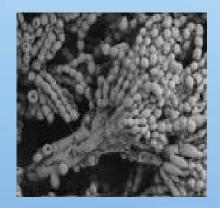


Molds

PENNSTATE

Multicellular microorganisms with microscopic filaments called *hyphae*. The mass of intermeshed hyphae, as seen macroscopically, is a *mycelium*.

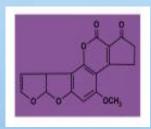

Funicillianty Class Ascorgyophes.

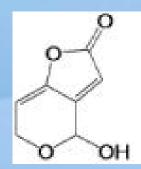

Molds

College of Agricultural Sciences

PENNSTATE

- Molds propagate by producing spores.
- These spores are the primary agents for the dispersal of molds.
- Mold spores are transported by air, insects, animals...





Concerns of molds in foods

- Spoilage
- Mycotoxins
 - (Aflatoxins, Patulin...)
- Allergies
- Infections

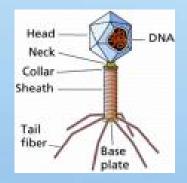
PENNSTATE College of Agricultural Sciences

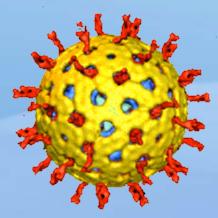
Yeasts

- Non-filamentous fungi, unicellular
- Cells that are ovoid or spheroid
- Reproduce mainly by budding

Food spoilage by yeasts

- Yeasts cause spoilage of various foods:
 - Frankfurters, ham
 - Honey, jam, jellies, syrups, candy...

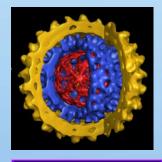


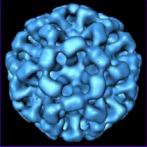

Viruses

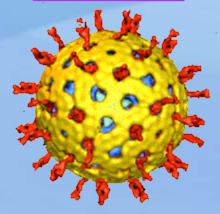
College of Agricultural Sciences

PENNSTATE

 Submicroscopic, parasitic, acellular microorganisms composed of a nucleic acid (DNA or RNA) core inside a protein coat.







Enteric viruses

- Hepatitis A virus
- Norwalk and related viruses
- Rotavirus


College of Agricultural Sciences

Factors affecting microbial growth

- Intrinsic Factors
 - Water Activity (A_w)
 - pH

PENNSTATE

- Oxidation-Reduction Potential
- Nutrients
- Preservatives
- Inhibitory substances
- Extrinsic Factors
 - Temperature
 - Availability of oxygen
 - Relative Humidity

Nutrients

College of Agricultural Sciences

PENNSTATE

- Energy sources
 Carbohydrates, proteins, lipids
- Nitrogen sources Amino acids, peptides, proteins
- Mineral sources
 Sulfur, phosphorus...
- Vitamins

pH range for microbial growth

- The optimal growth of most microorganisms is near neutrality (pH 7). However, pH range for growth for some foodborne pathogens:
- Bacteria: 4-8
- Yeast: 2-8
- Molds: 1-11

Temperature

• Psychrophiles

Grow well at 0°C (32°F), and have an optimum growth temperature of 15°C (59°F) or lower.

• Psychrotrophs

Can grow at 0–7°C (32–45°F) even though their optimal temperature is between 20–30°C (68-86°F). They are major factors in the spoilage of refrigerated foods.

Mesophiles

Grow very well at or near human body temperature. The optimal temperature is between 20-45 °C (68-113°F). Almost all human pathogens are mesophiles.

• Thermophiles

High temperature loving microorganisms. They often have optima between 55–65°C (131-149°F).

Oxygen availability

- Aerobic microorganisms
 Require free oxygen
 i.e. *Pseudomonas* species
- Anaerobic microorganisms
 Grow well in the absence of oxygen
 i.e. *Clostridium* species
- Facultative microorganisms
 Grow with or without the presence of free oxygen
 i.e. Lactobacillus species

Water Activity (Aw)

 Vapor pressure of the water in food (p) divided by the vapor pressure of pure water (p₀) at same temperature. Amount of free water available for microbial growth.

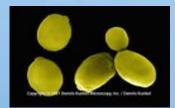
$A = p/p_0 = ERH/100$

ERH – Equilibrium Relative (in %) Humidity

Scale: 0 to 1

Food

Dried milk Cocoa powder Raw chicken, tomatoes Water **A**<u>w</u> 0.2 0.4 0.95-1.0 1.0


Minimum A_w for microbial growth

• Bacteria: 0.90

• Yeasts:

0.87

• Molds:

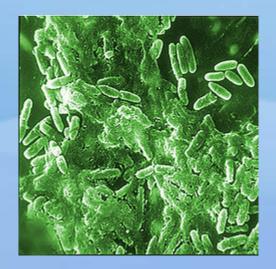
0.70

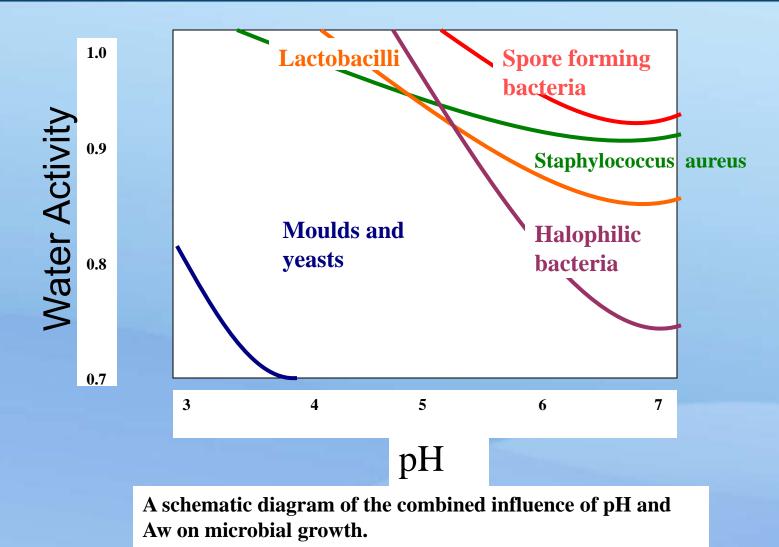
Chemical preservatives and other inhibitory substances Use of chemical preservatives to inhibit growth of microorganisms

Example: Sodium benzoate

Use of chemicals to kill microorganisms

Example: Sanitizers


Nutrition Facts Serving Sci 14 Cap (50 eC) Serving The Gelater 12 Asset for Serving Galaries 121	
Soluti Pad Og	0%
Sedue Hong	15
Robali Garthologelisation 25(g)	9%
Debuy Fiber 1g	2%
Sugara 25g	
Profeie 1g	
lief is deallined source of Galaxies Colores, inc. "Secret Colorisation and Secret Market Colorisation and Secret	National L. Northeastern



Other factors

- Interaction between growth factors: temperature, pH, and A_w
- Relationship between microbial load, temperature, and time to microbial growth
- Effect of biofilms

(Pitt and Hocking, 1999)

College of Agricultural Sciences

Questions

Microorganisms in Food

- Microorganisms in Food
- Pathogens
- Spoilage Organisms
- Microbial Analysis

Salmonella species

Mode: Infection

College of Agricultural Sciences

PENNSTATE

- Causes severe diarrhea with fever, vomiting, and dehydration
- Infective dose as few as 20 cells to 10,000
- Onset usually 12 to 14 hours
- Symptoms last 2 to 3 days (can get reactive arthritis 2 to 3 months later)
- Cases of illness associated with undercooked meat and poultry, eggs, cereal, pet food, peanut butter, produce (tomatoes, peppers)

Salmonella species

College of Agricultural Sciences

PENNSTATE

- Facultative anaerobe, Gram-negative rods
- Optimal growth 37°C and pH 6.5 to 7.8, but can grow as low as 2 to 4°C and up to 54°C, and pH from 4.5 to 9.5*
- Primary reservoir Intestinal tract of animals
- Incoming animals and animal products including eggs, contaminated produce, nuts, and grains, insects, birds
- Can survive in dry foods and refrigerated foods for prolonged periods of time *D'Aoust etal. (2001)

College of Agricultural Sciences

PENNSTATE

Salmonella – Multi-drug resistant (MDR)

- Salmonella with resistance to 2 to 10 antibiotics.
- Overall prevalence of Salmonella strains was 4.2 percent, while the prevalence of MDR salmonella was 0.6 percent
- Research shows decontamination treatments that reduce *Escherichia coli* O157:H7 contamination on beef also reduce non-O157 Shiga toxin-producing *E. coli* (STEC), plus MDR *Salmonella*
- Greater attention to removal of lymph nodes and hides of cattle, especially culled dairy cows, important to combat Salmonella prevalence

Salmonella species

- Control
 - Heat treatment
 - Concern with low Aw products at minimally process temperatures
 - Prevention of cross contamination
 - Air flow / dust control
 - Residue on equipment
 - Reduction of incoming raw materials

Escherichia coli O157:H7

- Mode: Toxin mediated infection
- Causes severe bloody diarrhea, cramping, fever, and can lead to HUS
- Infective dose as few as 10 cells
- Onset usually 4 to 10 days

- Symptoms last 4 to 14 days (6% lead to HUS with half of that requiring dialysis, fatality ~1%)
- Cases of illness associated with undercooked meat, produce, raw milk, cookie dough

Escherichia coli O157:H7

PENNSTATE

College of Agricultural Sciences

- Facultatively anaerobic, Gram-negative rods
- Acid tolerant growth at pH 4.0 to 4.5
- No unusual heat resistance (D value of 9.6s at 64.3°C)
- Primary reservoir Intestinal tract of cattle, as well as sheep and goats.
- Seasonal pattern of outbreaks during warmer months
- Sources of outbreaks include undercooked beef, raw milk, and produce contaminated via manure.

E. coli Non-0157 STECS

PENNSTATE

College of Agricultural Sciences

- USDA extended a zero-tolerance policy for *E. coli* O157:H7 in raw beef products by declaring six additional strains of *E. coli*, known as non-O157 Shiga-toxin producing *E. coli* (STECs)
- Beginning in March 2012, any raw ground beef, its components, and tenderized steaks that test positive for non-0157:H7 Shiga-toxin producing *E.coli* strains 026, 0103, 045, 0111, 0121 and 0145 will be considered adulterated

College of Agricultural Sciences

PENNSTATE

E. coli Non-O157 STECS

- An outbreak of *E. coli* O26 –associated with ground beef produced by Cargill's Wyalusing, Pa. was the first non-O157 STEC outbreak linked to beef.
- USDA's Food Safety and Inspection Service (FSIS) will begin testing for the six serogroups of STEC and enforcing the new policy on March 5, 2012.
- USDA Procedure the confirmatory PCR shall include the *stx* and *eae* multiplex PCR assay and the serogroup (*wzx*) specific multiplex PCR assay.

Escherichia coli O157:H7

Control

PENNSTATE

- Heat treatment
- Prevention of cross contamination
 - Manure
 - Raw beef
- Intervention strategies to eliminate from raw meat

Campylobacter

Mode: Infection

College of Agricultural Sciences

PENNSTATE

- Causes diarrhea (sometimes bloody), cramping, fever, can result in Guillain-Barre syndrome
- Infective dose less than 1,000 organisms
- Symptoms last several days to a week
- Most common cause of sporadic bacterial gastroenteritis
- Cases of illness associated with undercooked poultry and meat, unpasteurized milk, and contaminated water

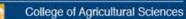
Campylobacter

- Microaerophilic (low oxygen) Gram-negative curved rods; motile
- Does not grow well below 30°C; sensitive to drying
- No unusual heat resistance
- Primary reservoir Many animals including poultry, cows, pigs, sheep, and wild birds. Also contaminated water and flies.

Campylobacter

- Control
 - Heat treatment
 - Intervention strategies to reduce prevalence in raw poultryn (ex. antimicrobials, air chilling)

Listeria monocytogenes


Mode: Infection

- Causes diarrhea, meningitis, encephalitis, septicemia, miscarriages, stillbirths
- Affects high risk groups Pregnant women, neonates, and immunocompromised adults
- Symptoms develop within 3 to 70 days
- Transmitted to foods via post process handling, or food is inadequately processed.
- Recent issues Sliced deli meat and other RTE meats, hot dogs, cheese, ice cream, coleslaw

Listeria monocytogenes

- Gram-positive, non-spore forming, facultative, motile rod
- Associated with animals, soil, water, food plants (cold and moist areas)
- Growth and survival
 - Low temperature growth as low as 0°C, and can survive freezing
 - pH growth down to 5.6*, and may survive below 4.3
 - Aw growth down to 0.93, can survive to 0.83
 - Salt growth up to 10 to 12% NaCl, can survive in higher concentrations for extended periods of time
 - High temperature inactivated at temperatures above 50°C* (D-values at 160°F – up to 5 seconds)

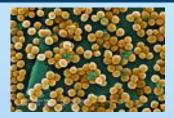
Listeria monocytogenes

Control

PENNSTATE

- Plant sanitation to prevent harborage sites and points for cross contamination with specific attention to biofilms
- Prevent entry through people, materials, and equipment
- Monitoring of environment
- Proper temperature control of foods
- Temperature and moisture control in environment

Staphylococcus aureus



- Mode: Intoxication
- Causes vomiting, nausea, and abdominal cramps
- Symptoms develop within 4 hours of ingestion and last 24 to 48 hours
- Transmitted to foods via post process handling organism grows on a temperature abused food item and produces a heat-stable toxin. The ingested toxin causes the illness.
- Recent issues batter, cooked chicken, canned mushrooms, cream filled pastries

College of Agricultural Sciences

Staphylococcus aureus

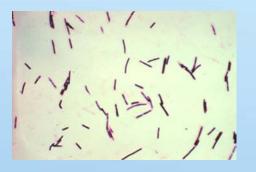
- Gram-positive cocci that grow under aerobic and anaerobic conditions
- While organism can grow as low as 6.7°C, optimal growth and toxin production occurs between 40 and 45°C
- Toxin is heat stable
- Salt tolerant (up to 20%) and can grow at Aw as low as 0.84
- Primary reservoir Animals including humans (skin, hair, nose, open sores, boils, saliva)

Staphylococcus aureus

Control

PENNSTATE

- Good personal hygiene practices
 - Washing hands
 - Covering wounds


Proper temperature control of foods
 Keep hot foods hot and cold foods cold

College of Agricultural Sciences

Clostridium perfringens

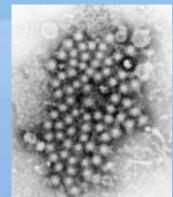
Mode: Toxin-mediated infection

- Causes diarrhea, severe dehydration, cramps
- Symptoms develop within 8 to 22 hours
- Organism grows to large numbers in food (10⁸), organisms are ingested, and then produce toxin in intestine
- Associated foods: temperature abused foods, roast beef, stews, meat gravy, poultry

Clostridium perfringens

- Gram positive, spore forming, anaerobic rod
- Heat resistance spores can survive boiling
- Found in soil, intestinal tracts of animals
- Control Cool foods rapidly after heating

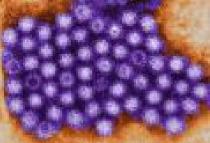
Other Bacterial Pathogens


- Clostridium botulinum
- Bacillus cereus
- Vibrio spp.
- Yersinia enterocolitica
- Shigella ssp.
- Aeromonas hydrophila

Viruses

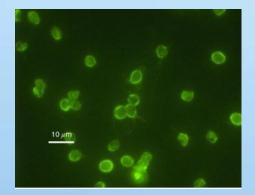
Hepatitis A

- Low infective dose (10 to 100 virus particles)
- Fever, malaise, nausea, abdominal discomfort, jaundice
- Spread through personal contact to food or food contact surface
- Associated with ready-to-eat foods
- Control good personal hygiene



Viruses

Norwalk virus


- Low infective dose (10 to 100 virus particles)
- Vomiting, diarrhea, and dehydration
- Spread through personal contact to food or food contact surface
- Associated with ready-to-eat foods, shellfish, and contaminated water
- Control good personal hygiene

Parasites

- Giardia
- Cryptosporidium parvum
- Cyclospora

- Sources contaminated water or foods that have come in contact with contaminated water, employees with organism
- Control use of potable water, good personal hygiene

Questions

Microorganisms in Food

- Microorganisms in Food
- Pathogens
- Spoilage Organisms
- Microbial Analysis

Spoilage Organisms
Lactic Acid Bacteria
Gram negative psychrotrophic organisms
Psychrophilic *Clostridium*Yeast and Mold

Lactic Acid Bacteria Spoilage

PENNSTATE

College of Agricultural Sciences

- 13 genera of gram positive bacteria which include *Lactococcus, Lactobacillus, Leuconostoc, Pediococcus,* and *Streptococcus*
- Produce lactic acid in either homofermentive or heterofermentive pathways
- Fastidious require certain nutrients for growth (such as preformed amino acids)
- Can grow below 5°C and as high 45°C, from pH 3.2 to as high as 9.6
- Will be predominate on vacuum packed meat where aerobic gram negative organisms are limited

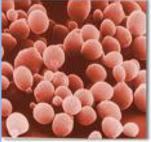
Gram-negative Psychrotrophic Spoilage Organisms

- Numerous genera of gram negative bacteria which include Acinetobacter, Pseudomonas, Flavobacterium, Alcaligenes, Psychrobacter, and Moraxella
- Many species capable of growth down to refrigeration temperatures
- Aerobic organisms such as *Pseudomonas* will grow rapidly on air chilled meat products producing off odors from the breakdown of proteins.
- In dairy products, species such as *Pseudomonas* and *Flavobacterium* produce the fruity, rancid, and bitter flavors

College of Agricultural Sciences

PENNSTATE

Psychrophilic Clostridium


- Species of gram positive sporeforming *Clostridium* bacteria which include *Cl. esterheticum*
- Production of carbon dioxide, hydrogen causing pack distention and butonal, butanoic acid, ethanol, acetic acid, and sulfur containing compounds
- Fastidious, do not compete as well against other microorganisms, and can be sensitive to antimicrobials

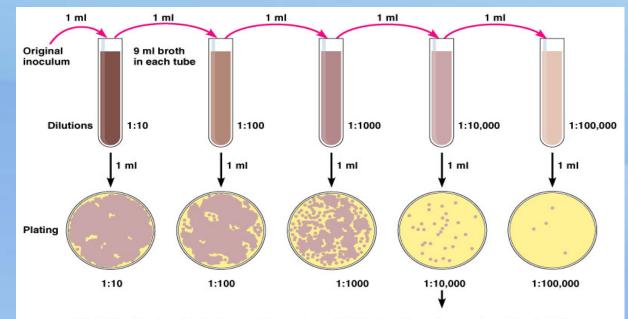
Yeast and Mold Spoilage

- Grow over a wide range of acid pH and Aw compared to bacteria
- Yeast can form slime on wieners and other meat products
- Some molds can produce mycotoxins
- Spoil fruits, vegetables, grains, nuts, meat
 - Geotrichum referred to as dairy mold or machinery mold
 - Mucor forms whiskers on beef

Mold

- Multicellular fungi form mycelium
- Grow over a wide pH range (below 1 to 11)
- Grow at low Aw (as low as 0.6)
- Some species produce mycotoxins

Questions


Microorganisms in Food

- Microorganisms in Food
- Pathogens
- Spoilage Organisms
- Microbial Analysis

Microbial Analysis

- Want Count (versus Presence/Absence)
- Counts by plating (CFU colony forming unit)

Microbial Analysis – APC / SPC

- Aerobic Plate Count / Standard Plate Count
 - Uses Standard Methods Agar incubated at 35 or 37°C for 48 hours
 - Advantage standardized methodology producing comparable results, easy analysis to conduct
 - Disadvantages

PENNSTATE

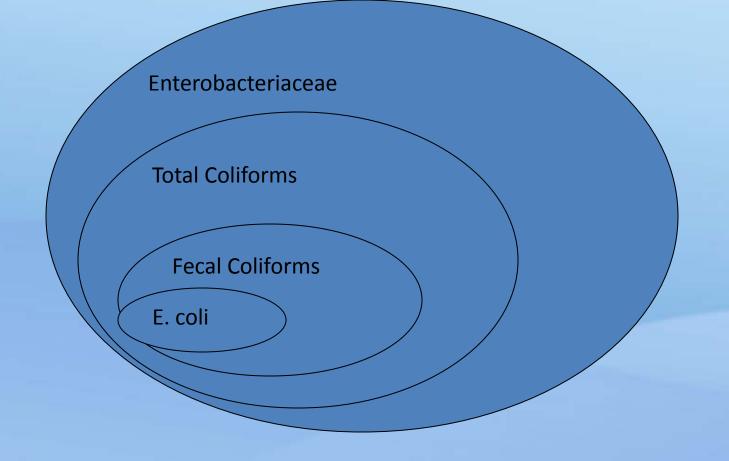
College of Agricultural Sciences

- will not get good growth of fastidious organisms,
- will not get much, if any, growth of anaerobic organism,
- will not get good growth of psychrophilic organisms

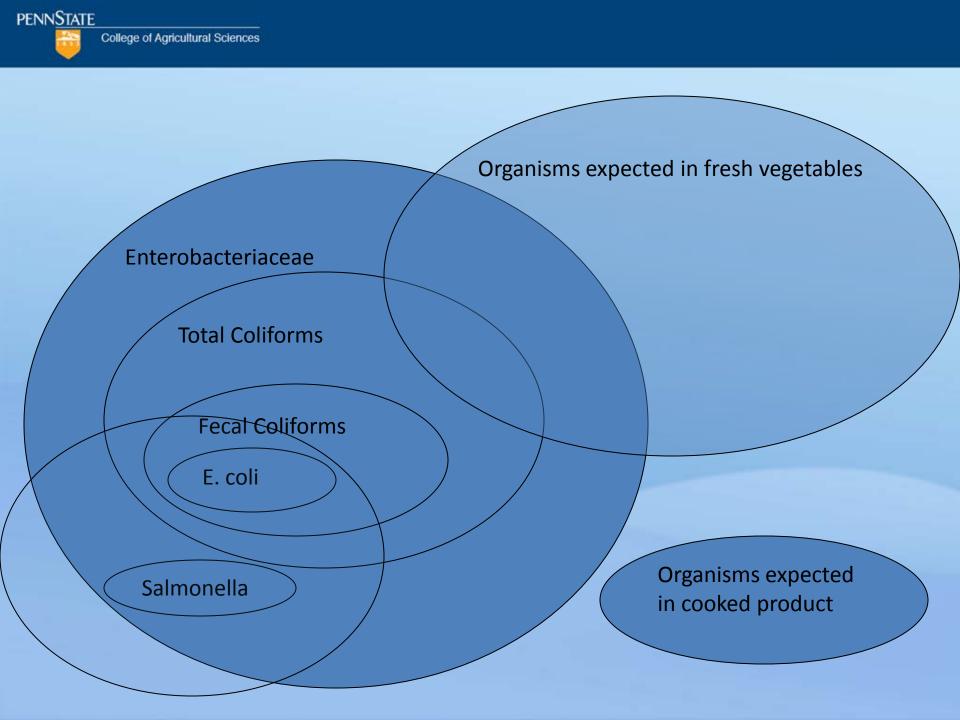
Microbial Analysis - SPC

Considerations

- Use more nutritious media such as MRS, to capture lactic acid bacteria
- Incubate plates anaerobically to capture levels of anaerobes
- Incubate plates at low temperature / longer time to capture psychrotrophic bacterial counts
- Use media designed for yeast and molds if those types of organisms are considered an issue


Microbial Analysis - Indicators

- Coliform / Fecal Coliform / generic E. coli
 - Methods include MPN, 3M Petrifilm, VRB, etc
 - Progressing from coliforms to *E. coli*, the correlation to fecal contamination increases



Total Coliforms and generic E. coli

Microbial Analysis - Indicators

- Coliform / Fecal Coliform / generic E. coli
 - Advantages standardized methodology producing comparable results,
 - easy analysis to perform
 - Can give an indication of insanitary conditions

Microbial Analysis - Indicators

- Coliform / Fecal Coliform / E. coli
 - Disadvantages coliforms counts may not be applicable on some products,
 - Not always a good assessment for determining shelflife or spoilage,
 - Coliform counts for a product may meet standard even though enteric pathogens such as salmonella may be present in low numbers,
 - Not a good indicator of viruses

Analysis for Indicator Organisms

Why?

Assess food safety and sanitation

- Correlate to the presence of pathogenic organisms
- Can be useful to assess sanitary conditions under which food was processed
- Reflect the microbiological quality of foods
 - Relative to shelf life

Pathogen Analysis

- Presence/ Absence (versus count)
- Sample size
 - 375 grams versus 25 gram sampling
 - N=60 sampling
- Environmental sampling
 - Use sponge versus a swab
 - Zone sampling

Sampling

- Determination of lot
- Location of samples
- Number of samples
- Size of samples
- Will samples be composited?

Sampling

Lot Definition

- A lot is a quantity of food or food units produced and handled under uniform conditions*
- Should be composed of food produced with as little variation as possible for a given process or commodity*
- From clean-up to clean-up

*ICMSF (2002)

PENNSTATE College of Agricultural Sciences

Sampling

- A *representative sample* reflects as far as possible the composition of the lot from which it is drawn.
- Important to avoid bias and draw sufficient sample units to confidently make a judgment about the given lot.
- Must be able to traceback all product

Sampling

PENNSTATE

Number of samples

- When testing for food pathogens (absence/presence), normally using 15, 30, and 60 sample units
- As units increase, probability of accepting a defective lot decreases.

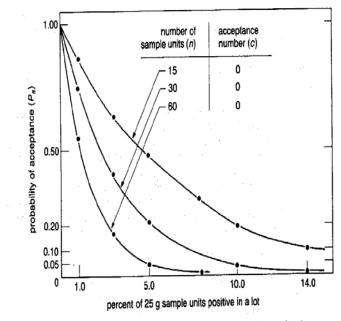


Figure 10-1 Relations between the sampling plan and the degree of security conferred-operating characteristic curves for three sampling plans proposed for Salmonella.

Source: ICMSF (2001) Microorganisms in Food 7

Sampling

Number of samples

- N = 60 For 5% defective rate, the probability of accepting a defective lot is 0.05
- N = 15 samples, P is 0.46 thus this would be missed approximately 50% of the time).

PENNSTATE College of Agricultural Sciences

Sampling

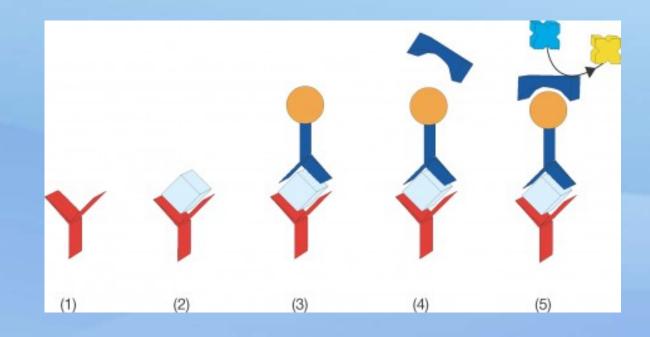
- Pooling samples combining of stomached samples or pre-enriched samples to decrease the number of tests.
- Difficult to determine which sample was positive, especially a problem if pooling different lots
- Risk of diluting out a positive sample
- Need to validate pooling procedure

Testing

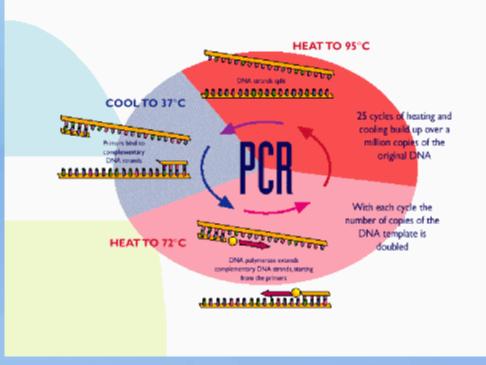
Choosing the testing methodology

Traditional methodology using plating and biochemical reactions

Immunological based assays


DNA based assays

- Focus on Detection (Presence/Absence)
- Pre-Enrichment / Enrichment
 - Increase the number of target organisms
 - Control or reduce the number of competing organisms
 - Required time usually 8 to 24 hours
- Detection method
 - Cultural
 - ELISA (Enzyme-linked Immuno Sorbent Assay)
 - PCR (Polymerase Chain Reaction)



Detection Methods - ELISA

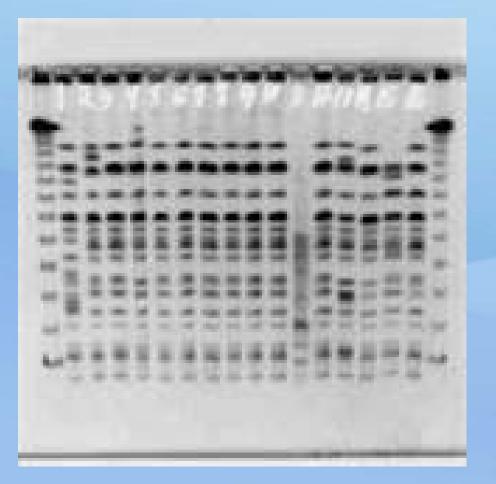
Polymerase chain reaction (PCR) enables researchers to produce millions of copies of a specific DNA sequence in approximately two hours

"DNA-Based Methods for Identifying and Subtyping Foodborne Pathogens" Bhushan Jayarao, Penn State University

Analysis for Pathogens

Pulsed-Field Gel Electrophoresis

- Scientists find bacterial fingerprints by cutting the bacteria's DNA into tiny pieces and then placing them on a gel, which is a flat slab of gelatin.
- Electricity is sent through the gel, causing the DNA pieces separate.
- Small pieces of DNA get carried farther down the gel than bigger pieces. This process creates a banding pattern or "fingerprint"


Pulsed-Field Gel Electrophoresis

How does PFGE work?

sis Solution DNA Plugs with Genomic DNA Pulsed-Field & Gel Electrophoresis

PFGE Pattern

Testing Errors

Testing errors can occur

- Type 1 error test result is positive when the sample is actually negative
- Type 2 error test result is negative when the product lot tested is actually positive

Microbiological Analysis

- Discussion of different analyses
- **E.** coli O157:H7
- Listeria monocytogenes
- Verification of Sanitation Program

Analysis for E. coli 0157:H7

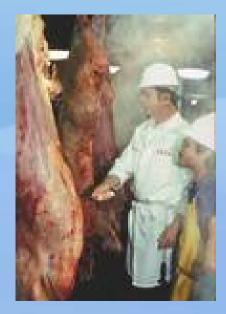
- Raw ground beef and raw ground beef products
- Organism may be at low levels
- Issue with own slaughter as well as incoming whole meat
- FSIS has protocols for working with small establishments handling raw ground beef

Analysis for E. coli 0157:H7

- **USDA Sampling and Analysis**
- Number of samples E. coli O157:H7
- n = 60 is used by USDA for trim that is used in ground meat products - get a total of 325g
 - (Sample 12 trim pieces from 5 combos.)
- For ground meat, take five, 65g for 325g total
- Can use n = 60 for produce

Number of Sample Pieces to Collect Per Container	
# of containers in each specific production	# of sample pieces to select from each container
5	12 pieces
4	15 pieces
3	20 pieces
2	30 pieces
1	60 pieces

Analysis for E. coli 0157:H7


Detection Method

- Presumptive: For FSIS testing, a presumptive positive for *E.* coli 0157 is that reacting to the 0157 somatic antiserum. This test and reaction indicates a "strong possibility that *E.* coli 0157:H7 is present."
- For industry testing, test results that indicate a strong possibility that *E. coli O157:H7 is present are considered presumptive positive results. Positive results of industry testing for E. coli O157:H7 using the BAX (trademark name) methodology would be considered presumptive positive results.*

Analysis for E. coli 0157:H7

- Request for Certificate of Analysis (COA)
- Use an intervention method
- Composite sample and test

Microbiological Analysis

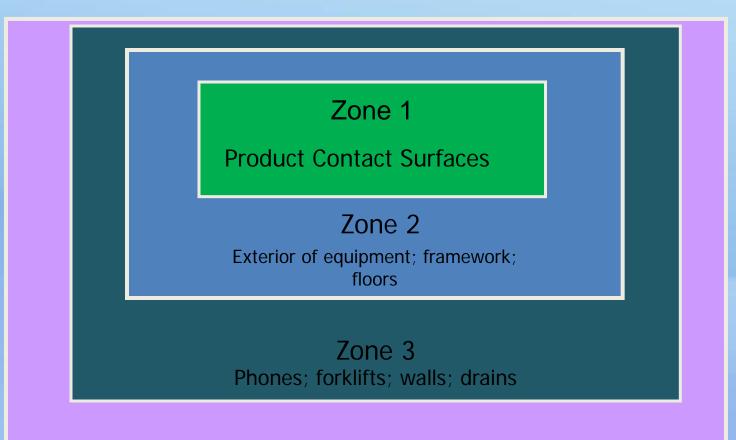
E. coli O157:H7 *Listeria monocytogenes*Verification of Sanitation Program
Premature spoilage

Analysis for Listeria monocytogenes

- Ready-to-Eat Meat Products (or products that are heat processed)
- Need to assume that the organism may be present

Analysis for Listeria monocytogenes

Product sampling


- May not detect low level contamination
- Test and hold until results complete
- Best as a verification of LM control system
- Environmental sampling Zones
 - Zone 1 Product contact
 - Zone 2 Adjacent to product contact
 - Zone 3 Areas in process not Zone 1 or 2
- Waste / scrap sampling

College of Agricultural Sciences

PENNSTATE

Environmental Sampling

Sanitary Zones Concept

Zone 4 Locker rooms, cafeteria, halls

Analysis for Listeria monocytogenes

- Environmental sampling Zones
 - Use moistened sponges

PENNSTATE

College of Agricultural Sciences

- Prepare a map so that you can identify each area for easy recording; record legibly
- Standardize testing protocol
- Maximize swabbed area
- Sanitize swabbed areas afterward (Zone 1)
- Pre-op and occasional operational

Microbiological Analysis

E. coli O157:H7
 Listeria monocytogenes Verification of Sanitation Program

Microbiological Analysis

- Verification of Sanitation Why?
 - Best way to verify effectiveness of cleaning and sanitizing
 - Establishes a record for review
 - May help identify trends and thus prevent potential issues

Microbiological Analysis

- Verification of Sanitation Types of analysis
 - Microbiological testing

Swabs

- Sponges
- APC, Listeria
- ATP Testing
- Food residuals

Microbiological Analysis

- Verification of Sanitation Surfaces
 - Food contact
 - Non-contact
 - Personnel
 - Air sampling

Microbiological Analysis

- Verification of Sanitation Establish a program Standardized methodology Establish frequency Indentify areas for sampling Random sampling of areas, but resampling trouble areas, areas not appearing clean
 - Go off the program occasionally to test new items (maintenance tools, etc)

Microbiological Analysis

- Verification of Sanitation Program
 - Analyze data for trends
 - Ensure follow-up on high count areas, including resampling
 - Standards for APC
 - <100 cfu /50 sq cm (<100 cfu /~8 sq in) USPHS*</p>
 - <5 cfu / sq cm (USDA 1994)</p>
 - <1.3 log cfu / sq cm (<20 cfu / sq cm)</p>
 - <100 cfu / 4 sq in</p>

*Compendium of Methods for the Microbiological Examination of Foods 2001

Microorganisms in Food

- Microorganisms in Food
- Pathogens
- Spoilage Organisms
- Microbial Analysis

Questions


THANK YOU!

College of Agricultural Sciences

Microbiology 101 for Small Meat Processors

NICHE MEAT PROCESSOR ASSISTANCE NETWORK

February 1, 2012 Webinar

www.nichemeatprocessing.org